Deep learning framework by BAIR
Created by Yangqing Jia Lead Developer Evan Shelhamer
Deconvolution
./include/caffe/layers/deconv_layer.hpp
./src/caffe/layers/deconv_layer.cpp
./src/caffe/layers/deconv_layer.cu
Uses the same parameters as the Convolution layer.
ConvolutionParameter convolution_param
./src/caffe/proto/caffe.proto
message ConvolutionParameter { optional uint32 num_output = 1; // The number of outputs for the layer optional bool bias_term = 2 [default = true]; // whether to have bias terms // Pad, kernel size, and stride are all given as a single value for equal // dimensions in all spatial dimensions, or once per spatial dimension. repeated uint32 pad = 3; // The padding size; defaults to 0 repeated uint32 kernel_size = 4; // The kernel size repeated uint32 stride = 6; // The stride; defaults to 1 // Factor used to dilate the kernel, (implicitly) zero-filling the resulting // holes. (Kernel dilation is sometimes referred to by its use in the // algorithme à trous from Holschneider et al. 1987.) repeated uint32 dilation = 18; // The dilation; defaults to 1 // For 2D convolution only, the *_h and *_w versions may also be used to // specify both spatial dimensions. optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only) optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only) optional uint32 kernel_h = 11; // The kernel height (2D only) optional uint32 kernel_w = 12; // The kernel width (2D only) optional uint32 stride_h = 13; // The stride height (2D only) optional uint32 stride_w = 14; // The stride width (2D only) optional uint32 group = 5 [default = 1]; // The group size for group conv optional FillerParameter weight_filler = 7; // The filler for the weight optional FillerParameter bias_filler = 8; // The filler for the bias enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 15 [default = DEFAULT]; // The axis to interpret as "channels" when performing convolution. // Preceding dimensions are treated as independent inputs; // succeeding dimensions are treated as "spatial". // With (N, C, H, W) inputs, and axis == 1 (the default), we perform // N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for // groups g>1) filters across the spatial axes (H, W) of the input. // With (N, C, D, H, W) inputs, and axis == 1, we perform // N independent 3D convolutions, sliding (C/g)-channels // filters across the spatial axes (D, H, W) of the input. optional int32 axis = 16 [default = 1]; // Whether to force use of the general ND convolution, even if a specific // implementation for blobs of the appropriate number of spatial dimensions // is available. (Currently, there is only a 2D-specific convolution // implementation; for input blobs with num_axes != 2, this option is // ignored and the ND implementation will be used.) optional bool force_nd_im2col = 17 [default = false]; }