Deep learning framework by BAIR
Created by Yangqing Jia Lead Developer Evan Shelhamer
ImageData
./include/caffe/layers/image_data_layer.hpp
./src/caffe/layers/image_data_layer.cpp
ImageDataParameter image_data_parameter
source
batch_size
rand_skip
shuffle
new_height
new_width
./src/caffe/proto/caffe.proto
message ImageDataParameter { // Specify the data source. optional string source = 1; // Specify the batch size. optional uint32 batch_size = 4 [default = 1]; // The rand_skip variable is for the data layer to skip a few data points // to avoid all asynchronous sgd clients to start at the same point. The skip // point would be set as rand_skip * rand(0,1). Note that rand_skip should not // be larger than the number of keys in the database. optional uint32 rand_skip = 7 [default = 0]; // Whether or not ImageLayer should shuffle the list of files at every epoch. optional bool shuffle = 8 [default = false]; // It will also resize images if new_height or new_width are not zero. optional uint32 new_height = 9 [default = 0]; optional uint32 new_width = 10 [default = 0]; // Specify if the images are color or gray optional bool is_color = 11 [default = true]; // DEPRECATED. See TransformationParameter. For data pre-processing, we can do // simple scaling and subtracting the data mean, if provided. Note that the // mean subtraction is always carried out before scaling. optional float scale = 2 [default = 1]; optional string mean_file = 3; // DEPRECATED. See TransformationParameter. Specify if we would like to randomly // crop an image. optional uint32 crop_size = 5 [default = 0]; // DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror // data. optional bool mirror = 6 [default = false]; optional string root_folder = 12 [default = ""]; }