Deep learning framework by BAIR
Created by Yangqing Jia Lead Developer Evan Shelhamer
Scale
./include/caffe/layers/scale_layer.hpp
./src/caffe/layers/scale_layer.cpp
./src/caffe/layers/scale_layer.cu
ScaleParameter scale_param
./src/caffe/proto/caffe.proto
message ScaleParameter { // The first axis of bottom[0] (the first input Blob) along which to apply // bottom[1] (the second input Blob). May be negative to index from the end // (e.g., -1 for the last axis). // // For example, if bottom[0] is 4D with shape 100x3x40x60, the output // top[0] will have the same shape, and bottom[1] may have any of the // following shapes (for the given value of axis): // (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60 // (axis == 1 == -3) 3; 3x40; 3x40x60 // (axis == 2 == -2) 40; 40x60 // (axis == 3 == -1) 60 // Furthermore, bottom[1] may have the empty shape (regardless of the value of // "axis") -- a scalar multiplier. optional int32 axis = 1 [default = 1]; // (num_axes is ignored unless just one bottom is given and the scale is // a learned parameter of the layer. Otherwise, num_axes is determined by the // number of axes by the second bottom.) // The number of axes of the input (bottom[0]) covered by the scale // parameter, or -1 to cover all axes of bottom[0] starting from `axis`. // Set num_axes := 0, to multiply with a zero-axis Blob: a scalar. optional int32 num_axes = 2 [default = 1]; // (filler is ignored unless just one bottom is given and the scale is // a learned parameter of the layer.) // The initialization for the learned scale parameter. // Default is the unit (1) initialization, resulting in the ScaleLayer // initially performing the identity operation. optional FillerParameter filler = 3; // Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but // may be more efficient). Initialized with bias_filler (defaults to 0). optional bool bias_term = 4 [default = false]; optional FillerParameter bias_filler = 5; }