Caffe
|
Computes the hinge loss for a one-of-many classification task. More...
#include <hinge_loss_layer.hpp>
Public Member Functions | |
HingeLossLayer (const LayerParameter ¶m) | |
virtual const char * | type () const |
Returns the layer type. | |
Public Member Functions inherited from caffe::LossLayer< Dtype > | |
LossLayer (const LayerParameter ¶m) | |
virtual void | LayerSetUp (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Does layer-specific setup: your layer should implement this function as well as Reshape. More... | |
virtual void | Reshape (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Adjust the shapes of top blobs and internal buffers to accommodate the shapes of the bottom blobs. More... | |
virtual int | ExactNumBottomBlobs () const |
Returns the exact number of bottom blobs required by the layer, or -1 if no exact number is required. More... | |
virtual bool | AutoTopBlobs () const |
For convenience and backwards compatibility, instruct the Net to automatically allocate a single top Blob for LossLayers, into which they output their singleton loss, (even if the user didn't specify one in the prototxt, etc.). | |
virtual int | ExactNumTopBlobs () const |
Returns the exact number of top blobs required by the layer, or -1 if no exact number is required. More... | |
virtual bool | AllowForceBackward (const int bottom_index) const |
Public Member Functions inherited from caffe::Layer< Dtype > | |
Layer (const LayerParameter ¶m) | |
void | SetUp (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Implements common layer setup functionality. More... | |
Dtype | Forward (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Given the bottom blobs, compute the top blobs and the loss. More... | |
void | Backward (const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom) |
Given the top blob error gradients, compute the bottom blob error gradients. More... | |
vector< shared_ptr< Blob< Dtype > > > & | blobs () |
Returns the vector of learnable parameter blobs. | |
const LayerParameter & | layer_param () const |
Returns the layer parameter. | |
virtual void | ToProto (LayerParameter *param, bool write_diff=false) |
Writes the layer parameter to a protocol buffer. | |
Dtype | loss (const int top_index) const |
Returns the scalar loss associated with a top blob at a given index. | |
void | set_loss (const int top_index, const Dtype value) |
Sets the loss associated with a top blob at a given index. | |
virtual int | MinBottomBlobs () const |
Returns the minimum number of bottom blobs required by the layer, or -1 if no minimum number is required. More... | |
virtual int | MaxBottomBlobs () const |
Returns the maximum number of bottom blobs required by the layer, or -1 if no maximum number is required. More... | |
virtual int | MinTopBlobs () const |
Returns the minimum number of top blobs required by the layer, or -1 if no minimum number is required. More... | |
virtual int | MaxTopBlobs () const |
Returns the maximum number of top blobs required by the layer, or -1 if no maximum number is required. More... | |
virtual bool | EqualNumBottomTopBlobs () const |
Returns true if the layer requires an equal number of bottom and top blobs. More... | |
bool | param_propagate_down (const int param_id) |
Specifies whether the layer should compute gradients w.r.t. a parameter at a particular index given by param_id. More... | |
void | set_param_propagate_down (const int param_id, const bool value) |
Sets whether the layer should compute gradients w.r.t. a parameter at a particular index given by param_id. | |
Protected Member Functions | |
virtual void | Forward_cpu (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Computes the hinge loss for a one-of-many classification task. More... | |
virtual void | Backward_cpu (const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom) |
Computes the hinge loss error gradient w.r.t. the predictions. More... | |
Protected Member Functions inherited from caffe::Layer< Dtype > | |
virtual void | Forward_gpu (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Using the GPU device, compute the layer output. Fall back to Forward_cpu() if unavailable. | |
virtual void | Backward_gpu (const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom) |
Using the GPU device, compute the gradients for any parameters and for the bottom blobs if propagate_down is true. Fall back to Backward_cpu() if unavailable. | |
virtual void | CheckBlobCounts (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
void | SetLossWeights (const vector< Blob< Dtype > *> &top) |
Additional Inherited Members | |
Protected Attributes inherited from caffe::Layer< Dtype > | |
LayerParameter | layer_param_ |
Phase | phase_ |
vector< shared_ptr< Blob< Dtype > > > | blobs_ |
vector< bool > | param_propagate_down_ |
vector< Dtype > | loss_ |
Computes the hinge loss for a one-of-many classification task.
bottom | input Blob vector (length 2)
|
top | output Blob vector (length 1)
|
In an SVM, is the result of taking the inner product of the features and the learned hyperplane parameters . So, a Net with just an InnerProductLayer (with num_output = ) providing predictions to a HingeLossLayer is equivalent to an SVM (assuming it has no other learned outside the InnerProductLayer and no other losses outside the HingeLossLayer).
|
protectedvirtual |
Computes the hinge loss error gradient w.r.t. the predictions.
Gradients cannot be computed with respect to the label inputs (bottom[1]), so this method ignores bottom[1] and requires !propagate_down[1], crashing if propagate_down[1] is set.
top | output Blob vector (length 1), providing the error gradient with respect to the outputs |
propagate_down | see Layer::Backward. propagate_down[1] must be false as we can't compute gradients with respect to the labels. |
bottom | input Blob vector (length 2)
|
Implements caffe::Layer< Dtype >.
|
protectedvirtual |
Computes the hinge loss for a one-of-many classification task.
bottom | input Blob vector (length 2)
|
top | output Blob vector (length 1)
|
In an SVM, is the result of taking the inner product of the features and the learned hyperplane parameters . So, a Net with just an InnerProductLayer (with num_output = ) providing predictions to a HingeLossLayer is equivalent to an SVM (assuming it has no other learned outside the InnerProductLayer and no other losses outside the HingeLossLayer).
Implements caffe::Layer< Dtype >.