Caffe
|
Computes the multinomial logistic loss for a one-of-many classification task, passing real-valued predictions through a softmax to get a probability distribution over classes. More...
#include <softmax_loss_layer.hpp>
Public Member Functions | |
SoftmaxWithLossLayer (const LayerParameter ¶m) | |
virtual void | LayerSetUp (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Does layer-specific setup: your layer should implement this function as well as Reshape. More... | |
virtual void | Reshape (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Adjust the shapes of top blobs and internal buffers to accommodate the shapes of the bottom blobs. More... | |
virtual const char * | type () const |
Returns the layer type. | |
virtual int | ExactNumTopBlobs () const |
Returns the exact number of top blobs required by the layer, or -1 if no exact number is required. More... | |
virtual int | MinTopBlobs () const |
Returns the minimum number of top blobs required by the layer, or -1 if no minimum number is required. More... | |
virtual int | MaxTopBlobs () const |
Returns the maximum number of top blobs required by the layer, or -1 if no maximum number is required. More... | |
Public Member Functions inherited from caffe::LossLayer< Dtype > | |
LossLayer (const LayerParameter ¶m) | |
virtual int | ExactNumBottomBlobs () const |
Returns the exact number of bottom blobs required by the layer, or -1 if no exact number is required. More... | |
virtual bool | AutoTopBlobs () const |
For convenience and backwards compatibility, instruct the Net to automatically allocate a single top Blob for LossLayers, into which they output their singleton loss, (even if the user didn't specify one in the prototxt, etc.). | |
virtual bool | AllowForceBackward (const int bottom_index) const |
Public Member Functions inherited from caffe::Layer< Dtype > | |
Layer (const LayerParameter ¶m) | |
void | SetUp (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Implements common layer setup functionality. More... | |
Dtype | Forward (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Given the bottom blobs, compute the top blobs and the loss. More... | |
void | Backward (const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom) |
Given the top blob error gradients, compute the bottom blob error gradients. More... | |
vector< shared_ptr< Blob< Dtype > > > & | blobs () |
Returns the vector of learnable parameter blobs. | |
const LayerParameter & | layer_param () const |
Returns the layer parameter. | |
virtual void | ToProto (LayerParameter *param, bool write_diff=false) |
Writes the layer parameter to a protocol buffer. | |
Dtype | loss (const int top_index) const |
Returns the scalar loss associated with a top blob at a given index. | |
void | set_loss (const int top_index, const Dtype value) |
Sets the loss associated with a top blob at a given index. | |
virtual int | MinBottomBlobs () const |
Returns the minimum number of bottom blobs required by the layer, or -1 if no minimum number is required. More... | |
virtual int | MaxBottomBlobs () const |
Returns the maximum number of bottom blobs required by the layer, or -1 if no maximum number is required. More... | |
virtual bool | EqualNumBottomTopBlobs () const |
Returns true if the layer requires an equal number of bottom and top blobs. More... | |
bool | param_propagate_down (const int param_id) |
Specifies whether the layer should compute gradients w.r.t. a parameter at a particular index given by param_id. More... | |
void | set_param_propagate_down (const int param_id, const bool value) |
Sets whether the layer should compute gradients w.r.t. a parameter at a particular index given by param_id. | |
Protected Member Functions | |
virtual void | Forward_cpu (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Using the CPU device, compute the layer output. | |
virtual void | Forward_gpu (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
Using the GPU device, compute the layer output. Fall back to Forward_cpu() if unavailable. | |
virtual void | Backward_cpu (const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom) |
Computes the softmax loss error gradient w.r.t. the predictions. More... | |
virtual void | Backward_gpu (const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom) |
Using the GPU device, compute the gradients for any parameters and for the bottom blobs if propagate_down is true. Fall back to Backward_cpu() if unavailable. | |
virtual Dtype | get_normalizer (LossParameter_NormalizationMode normalization_mode, int valid_count) |
Protected Member Functions inherited from caffe::Layer< Dtype > | |
virtual void | CheckBlobCounts (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
void | SetLossWeights (const vector< Blob< Dtype > *> &top) |
Protected Attributes | |
shared_ptr< Layer< Dtype > > | softmax_layer_ |
The internal SoftmaxLayer used to map predictions to a distribution. | |
Blob< Dtype > | prob_ |
prob stores the output probability predictions from the SoftmaxLayer. | |
vector< Blob< Dtype > * > | softmax_bottom_vec_ |
bottom vector holder used in call to the underlying SoftmaxLayer::Forward | |
vector< Blob< Dtype > * > | softmax_top_vec_ |
top vector holder used in call to the underlying SoftmaxLayer::Forward | |
bool | has_ignore_label_ |
Whether to ignore instances with a certain label. | |
int | ignore_label_ |
The label indicating that an instance should be ignored. | |
LossParameter_NormalizationMode | normalization_ |
How to normalize the output loss. | |
int | softmax_axis_ |
int | outer_num_ |
int | inner_num_ |
Protected Attributes inherited from caffe::Layer< Dtype > | |
LayerParameter | layer_param_ |
Phase | phase_ |
vector< shared_ptr< Blob< Dtype > > > | blobs_ |
vector< bool > | param_propagate_down_ |
vector< Dtype > | loss_ |
Computes the multinomial logistic loss for a one-of-many classification task, passing real-valued predictions through a softmax to get a probability distribution over classes.
This layer should be preferred over separate SoftmaxLayer + MultinomialLogisticLossLayer as its gradient computation is more numerically stable. At test time, this layer can be replaced simply by a SoftmaxLayer.
bottom | input Blob vector (length 2)
|
top | output Blob vector (length 1)
|
|
inlineexplicit |
param | provides LossParameter loss_param, with options:
|
|
protectedvirtual |
Computes the softmax loss error gradient w.r.t. the predictions.
Gradients cannot be computed with respect to the label inputs (bottom[1]), so this method ignores bottom[1] and requires !propagate_down[1], crashing if propagate_down[1] is set.
top | output Blob vector (length 1), providing the error gradient with respect to the outputs |
propagate_down | see Layer::Backward. propagate_down[1] must be false as we can't compute gradients with respect to the labels. |
bottom | input Blob vector (length 2)
|
Implements caffe::Layer< Dtype >.
|
inlinevirtual |
Returns the exact number of top blobs required by the layer, or -1 if no exact number is required.
This method should be overridden to return a non-negative value if your layer expects some exact number of top blobs.
Reimplemented from caffe::LossLayer< Dtype >.
|
protectedvirtual |
Read the normalization mode parameter and compute the normalizer based on the blob size. If normalization_mode is VALID, the count of valid outputs will be read from valid_count, unless it is -1 in which case all outputs are assumed to be valid.
|
virtual |
Does layer-specific setup: your layer should implement this function as well as Reshape.
bottom | the preshaped input blobs, whose data fields store the input data for this layer |
top | the allocated but unshaped output blobs |
This method should do one-time layer specific setup. This includes reading and processing relevent parameters from the layer_param_
. Setting up the shapes of top blobs and internal buffers should be done in Reshape
, which will be called before the forward pass to adjust the top blob sizes.
Reimplemented from caffe::LossLayer< Dtype >.
|
inlinevirtual |
Returns the maximum number of top blobs required by the layer, or -1 if no maximum number is required.
This method should be overridden to return a non-negative value if your layer expects some maximum number of top blobs.
Reimplemented from caffe::Layer< Dtype >.
|
inlinevirtual |
Returns the minimum number of top blobs required by the layer, or -1 if no minimum number is required.
This method should be overridden to return a non-negative value if your layer expects some minimum number of top blobs.
Reimplemented from caffe::Layer< Dtype >.
|
virtual |
Adjust the shapes of top blobs and internal buffers to accommodate the shapes of the bottom blobs.
bottom | the input blobs, with the requested input shapes |
top | the top blobs, which should be reshaped as needed |
This method should reshape top blobs as needed according to the shapes of the bottom (input) blobs, as well as reshaping any internal buffers and making any other necessary adjustments so that the layer can accommodate the bottom blobs.
Reimplemented from caffe::LossLayer< Dtype >.